Acute response to pathogens in the early human placenta at single-cell resolution

Regina Hoo, Elias R. Ruiz-Morales, Iva Kelava, Mukul Rawat, Cecilia Icoresi Mazzeo, Elizabeth Tuck, Carmen Sancho-Serra, Sara Chelaghma, Alexander V. Predeus, Simon Murray, David Fernandez-Antoran, Ross F. Waller Damiana Álvarez-Errico, Marcus C.S. Lee, Roser Vento-Tormo

Cell SystemsVolume 15, Issue 5, Pages 425 – 444.e915 May 2024

Summary
The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child’s health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications—Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.